NLP/Paper Review

[MTQE]Machine Translation Error Classification 논문 요약 정리

joannekim0420 2021. 11. 24. 11:11
728x90

논문 정리 요약본

  1. Error Analysis of Statistical Machine Learning Translation Output
  2. Translation Quality and Error Recognition in professional neural machine translation post-editing
  3. Error detection and error correction for improving quality in machine translation and human post-editing

 

목적 : MT 오류 유형 분석

1.Error Analysis of Statistical Machine Learning Translation Output

[세부 내용 정리]https://joannekim0420.tistory.com/33

ERROR 유형들을 5가지(missing words, word order, Incorrect words, Unknown Words, Punctuation)로 분류함.

 

ENGLISH to SPANISH 

  1. Incorrect Words (64.4%)
    -Sense (21.9%) → 의미변절 
          >Wrong Lexical Choice (13.0%)→ 의미 오번역
          >Disambiguation (8.9%) → 의미 불명확한 경우
    -Incorrect Form (33.9%) → 단어 형태가 맞지 않는 경우 (굴절어에 더 민감)
          >Incorrect Tense (15.1%) → 스페인어의 경우 17가지의 verb tense 존재(굴절어 특징)
          >Incorrect Person → 문장이 길어지면서 동사가 대응되는 주어를 찾지 못했을 때
          >Incorrect Gender&Number → 관사와 형용사는 gender 와 명사 개수에 맞아야 함. 
  2. Missing Words (19.9%)
    -Content Words(7.9%) → 의미 표현에 중요 단어(noun, verb etc)가 빠진 경우
    -Filler Words(12.0%) → 문법적인 요소일 뿐, 의미는 유지되는 경우

  3. Word Order (15.4%) → 영어 adj-noun / 스페인어 noun-adj 순서
    -Local Word Order(11.6%) → 시스템이 찾지 못한 adj-noun pair 또는 더 긴 문장을 reordering 하는 경우

 

SPANISH to ENGLISH → 스페인어에 비하면 영어는 비교적 덜한 굴절어라 ENES보다 오류율이 조금 낮음

  1. Incorrect Words(50.8%)
    -Sense
          >Wrong Lexical Choice (18.5%) 
    -Incorrect Form(9.4%) 

  2. Missing Words(27.5%)
    -Content Words(22.1%) 
    -Filler Words(5.4%) 

  3. Word Order(17.8%)
  4. Extra Words(17.8%)
    -Content words(5.4%)
    -Filler Words(12.4%)

 

CHINESE to ENGLISH → 수식어구의 위치가 다르다는게 두 언어의 차이

  1. Incorrect Words(27.9%)
    -Sense(28.2%)
          >Wrong Lexical Choice (15.5%) 
          >Disambiguation (12.7%)
    -Incorrect Form(9.9%) 

  2. Missing Words(26.0%)
    -Content Words(7.2%) 
    -Filler Words(18.8%)  → filler words 의 비중이 높아 의미 보존 된 sentence는 많음

  3. Word Order(20.4%)
    -Local Word Order (12.7%)

 

2.Translation Quality and Error Recognition in professional neural machine translation post-editing

[세부 내용 정리] https://joannekim0420.tistory.com/31

  • lexical errors 에 초점을 둠
  • Hjerson = automatic MT error Analysis 

  • WER = Word Error Rate
  • RPER = position-independent error rate in the reference (source)
  • HPER = position-independent error rate in the hypothesis (target)
  1. inflectional error 
    a word whose full form is marked as RPER/HPER error but the base forms are the same
  2. reordering error
    a word which occurs both in the reference and in the hypothesis is thus not contributing to RPER or HPEr but is marked a WER error
  3. missing word
    a wrod which occurs as deletion in WER errors and at the same time occurs as RPER error without sharing the base form with any hypothesis error
  4. extra word
    a wrod which occurs as insertion in WER errors and at the same time occurs as HPER error without sharing the base form with any reference error
  5. incorrect lexical choice
    a word which belongs to neither to inflectional errors nor to missing or extra word is considered as lexical error
  • NMP = machine translation 결과
  • NMTPE = NMP 결과를 1번 전문가가 post-editing 한 결과 (오류가 남아 있는 경우는 오류를 놓치거나 오류를 옳게 수정하지 않은 경우)

→ lexical errors 가 대부분을 차지. 

→ lexical error 와 extra word 를 구분하기 모호해 둘을 합친 후 세부 유형을 MQM 프레임워크 기반으로 오류 유형을 나눔 

  • REV = NMTPE 를 전문가가 다시 수정한 결과

→ 오류가 아닌 이슈로 classification 함(위 기준대로 수정한다고 해도 모두 실제 번역 오류라고 볼 수 없음)

→ 총 6개의 기준(Mistranslation, Terminology, Unidiomatic, Register, Spelling, Function words) 으로 분류

  1. Mistranslation 
    the target content does not accurately represent the source content 
    → 오번역, tgt이 src의 의미를 제대로 번역 못한 경우

  2. Terminology 
    a term (domain specific word) is translated with a term other than the one expected for the domain or otherwise specified
    → domain이 정해진 단어가 같은 도메인으로 번역되지 않은 경우

  3. Unidiomatic
    The content is grammatical, but not idiomatic 
    → 문법적으로 틀리진 않지만, 원어민이 느끼기에 자연스럽지 못한 경우

  4. Register 
    The text uses a level of formality higher or lower than required by the specifications or general language conventions 
    → 언어 규칙에 맞지 않는 존대, 낮춤 사용한 경우
  5. Spelling 
    Issues related to spelling of words 
    → 철자 관련해서 틀린 경우

  6. Function words
    A function word (preposition, helping verb, article, etc) is used incorrectly 
    → 전치사, 관형사, 등등이 옳게 쓰이지 않음

 

 

3.Error detection and error correction for improving quality in machine translation and human post-editing   

[세부 내용 정리]https://joannekim0420.tistory.com/30

MQM framework + TAUS document 바탕으로 7가지(Accuracy, Fluency, Style, Terminology, Wrong language variety, Named entities, Formatting and encoding errors) 오류로 나누고

가장 에러 비율이 높은 비중을 차지하는 Fluency Error  Word Order in noun modification structures 에 집중해서 살펴봄.

 

ENGLISH Detection WARNING to human editors

  • RULE 1
    when a named entity occurs in the target text and is preceded or followed by an adjective or a PP that modifies it
    (ADJP|PP) + PROPN → warning
    PROPN + (ADJP|PP) → warning

  • RULE 2
    When a named entity occurs in the target text within a PP as a modifier
    N + modifiesP + PROPN → warning

  • RULE 3
    If a noun or a PP preced the head noun
    (N|PP)+N → warning

  • RULE 4
    If one of the sequences listed below are detected
    N + N → warning
    N + ADJ+ +N → warning
    ADJ+ + N + M → warning
    ADJ + ADJ+ + N + N+ → warning

 

ENGLISH CORRECTION

  • RULE 5
    If an adjective modifying a noun in English and the adjective is a quality adjective, then the order in the target language should be noun adjective
    ADJQ + N → N + ADJQ

  • RULE 6 
    If a noun preceding another noun in English, and the first noun modifies the second, invert the order and convert the noun into an adjective phrase or a PP
    N1 + modifiesN2 → N2 +(ADJP|PPN1)

 

ITALIAN DETECTION WARNING to human editors

  • RULE 7
    if a noun ending in a consonant occurs in the target text, check if its specifiers and modifiers are masculine.
    SPR* + N_consonant + MOD* → SPR*masc + N_consonant + MOD*masc

  • RULE 8
    if a noun ending in an -s occurs in the target text, check if it is a foreign word in plural form.

  • RULE 9
    when a named entity occurs in the target text co-occuring with specifiers and modifiers, ask the editor to check the agreement between all these elements
    SPR* + MOD* +PROPN + MOD* → warning

  • RULE 10
    if the quantifier "nessuno" or "chiunque" are part of the subject of a sentence, ask the editor to check if the head verb form of the sentence is singular

 

ITALIAN CORRECTION

  • RULE 11
    if a noun ending in "-tore" occurs in the target text, then its specifiers and modifiers are masculine
    SPR* + N_tore + MOD* → SPR*masc + N_tore + MOD*masc

  • RULE 12 (Itlalian)
    if a noun ending "-ta","-tu","-trice","-tite' or "-zione" occurs in the target text, then its specifiers and modifiers are feminine.
    SPR* + N_ta | tu | -trice | -tite | -zione + MOD* → SPR* + N-ta + MOD*fem
  1. Error Analysis of Statistical Machine Learning Translation Output
  2. Translation Quality and Error Recognition in professional neural machine translation post-editing
  3. Error detection and error correction for improving quality in machine translation and human post-editing